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The common digital method that is used to eliminate the effect of fiber tilt from

fiber diffraction patterns is based on an approximation given by Franklin &

Gosling [Acta Cryst. (1953), 6, 678–685]. The estimate of the tilt angle is

iteratively optimized in the so-called ‘Fraser correction’. Building on the

fundamental work of Polanyi [Z. Phys. (1921), 7, 149–180], the exact solution is

presented.

1. Introduction

Each quantitative analysis of a two-dimensional diffraction pattern

with fiber symmetry starts with a geometric correction. This trans-

formation remaps the detector image onto a plane of reciprocal space

s ¼ ðs1; s2; s3Þ that contains the meridian, s3. The magnitude of the

scattering vector is defined by sj j ¼ s ¼ ð2=�Þ sin �. � is the wave-

length of radiation and 2� is the scattering angle. Fiber symmetry

means that the scattering intensity IðsÞ ¼ Iðs12; s3Þ exhibits cylindrical

symmetry, with s12 ¼ ðs
2
1 þ s2

2Þ
1=2.

At least two recently published open-source computer programs

(Rajkumar et al., 2005; Bian et al., 2006) offer the common (Fraser et

al., 1976) digital correction method (‘Fraser correction’), which

involves several steps. The subject of this communication is the first

nontrivial step, in which both the tilt angle � of the fiber with respect

to the plane perpendicular to the primary beam and the position of

the primary beam on the detector are refined interactively (Fraser et

al., 1976), even if images of sharp reflections in the pattern could be

used for direct computation. In the Fraser process this iteration is

essential, because the inversion equation of Franklin & Gosling

(1953) has proved (Fraser et al., 1976; Millane & Arnott, 1985) to

return approximations only. Here it will be demonstrated that the

exact solution is obtained by simple analysis of the scattering

geometry. Just like in the cited original work, for this purpose the

positions of three or four image spots of the same reflection are

employed.

An attempt to study the position of these image spots in the tilted

fiber diagram without a sophisticated abstraction of the problem may

cause rather complex equations. An ingenious abstraction has been

presented by Polanyi (1921) in an obviously forgotten work. It is

based on the intersection of two spheres and results in the Polanyi

equations. Inversion of the Polanyi equations returns analytical

expressions for the tilt angle �.

2. Theoretical

Assumption. Let the fiber diffraction experiment be carried out in

normal transmission geometry using a flat two-dimensional detector;

the detector tilt be determined in a test experiment using an isotropic

sample with sharp reflections; and the patterns be corrected

accordingly.

2.1. Polanyi construction and direction angles

Polanyi (1921) considers only reflections that diffract under a

single scattering angle 2�r. Thus, in reciprocal space their images are

on a sphere about the origin that has the radius sr. On this Polanyi

sphere (jsrj ¼ sr), let us consider one special fiber reflection with

sr ¼ ðs12r;�s3rÞ, which becomes manifest in two thin rings. In Fig. 1

short thick arrows point at these ring reflections.

The fiber is irradiated by the primary beam and the corresponding

cross section defines the center of the Ewald sphere of radius 1=�.

Where the primary beam exits from the Ewald sphere, the origin of

reciprocal space is located (axes s1, s2 and s3). A plane two-

dimensional detector probes the surface of the Ewald sphere. Thus,

the intersection of the surfaces of the Ewald sphere and the Polanyi

sphere is the curve from which intensity of the chosen reflection can

reach the detector. Polanyi calls this curve the reflection circle. As the

fiber in the primary beam is tilted by the angle �, the Polanyi sphere

together with reciprocal space are rotating similarly. Nevertheless, the

position of the reflection circle remains the same with respect to the

primary beam and the detector. The reflection circle itself is mapped

onto the detector plane by central projection. Fig. 1 demonstrates a

case in which all four possible image spots appear on the detector.

Obviously, contraction of the rings on the sphere will cause image

Figure 1
Sketch of fiber diffraction geometry with Ewald sphere and Polanyi sphere. The
curve of intersection is a circle (‘reflection circle’) that does not change as the fiber
is tilted (tilt angle �). The radius of the Polanyi sphere is chosen to match the
magnitude sr of a chosen reflection manifested in two rings ðs12r;�s3rÞ. The
trihedron ðs1; s2; s3Þ indicates reciprocal space.



spots to vanish on the detector. A sketch of the detector plane is

presented in Fig. 2.

As long as the positions of at least three image spots of any

reflection on the detector can be measured accurately, the center of

the reflection circle is determined. A principal uncertainty as alleged

by Fraser et al. (1976) does not exist. The meridional axis f3 in the

‘film’ coordinate system is always a symmetry axis, and the equatorial

axis f1 runs in the perpendicular direction through the center of the

reflection circle. Only an ideal (� ¼ 0) fiber diagram exhibits four-

quadrant symmetry. In this case, the four image spots of the reflection

are found under the uniform direction angle �0, which is measured

against the meridional axis. As demonstrated by Polanyi, this angle is

given by cos �0 ¼ cos �= cos �r with cos � ¼ s3r=sr. This ‘ideal Polanyi

equation’ is readily established by consideration of a spherical

triangle on the Polanyi sphere and application of the cosine rule for

sides. As a function of the tilt angle �, the image spots move on the

reflection circle and can disappear or appear on the meridian. For the

tilted fiber diagram the deduction of the direction angle � is similar to

that for the ideal fiber diagram and gives the general Polanyi equation

cos � ¼
cos �� sin� sin �r

cos� cos �r

: ð1Þ

As it is written here, the equation looks different from that published

in the original paper (Polanyi, 1921), because Polanyi defines

�Polanyi ¼ �=2� � by the angle between the fiber and primary beam,

whereas here the currently customary tilt-angle definition is used. If �
is called the ‘upper’ direction angle, then the general Polanyi equation

for the lower direction angle �0 is obtained by the substitution

�!��:

cos �0 ¼
cos �þ sin� sin �r

cos� cos �r

: ð2Þ

2.2. Inversion of the Polanyi equations

Let us leave the paper of Polanyi and turn to the determination of

the tilt angle �. Solving equations (1) and (2) directly for cos� gives

cos� ¼
cos �

cos �r

2

cos �þ cos �0
: ð3Þ

Equation (3) is numerically stable for small tilt angle (i.e.

cos � ’ cos �0), because it contains the sum but not the difference of

the measured direction angle cosines. On the other hand, the sign of

the tilt angle is lost. Let the equation be converted for practical use.

From the crystal structure data cos � ¼ s3r=sr can be computed. With

sin �r ¼ ð�srÞ=2 from the definition of the magnitude of the scattering

vector, and cos �r ¼ ð1� �
2s2

r=4Þ1=2, it follows that

cos� ¼
s3r

srð4� �
2s2

r Þ
1=2

4

cos �þ cos �0
: ð4Þ

It should be mentioned that the angle �0 is measured against the

negative branch of the meridional axis (cf. Fig. 2).

Franklin & Gosling (1953) [their equation (5)] report a simple

equation,

tan� ¼ ðs3r þ s03rÞ=ð�s2
r Þ; ð5Þ

without deduction, which has turned out to be inaccurate (Fraser et

al., 1976; Millane & Arnott, 1985). Moreover, the relation to

measurable numbers is somewhat awkward. Thus, in Fig. 2 the

measurable vertical components f3r and f 03r have been drawn in. Upon

central back-projection onto the reflection circle they turn into s3r

and s03r. In order to compute these components, the distance between

the sample and the detector must be known – which is unnecessary, in

principle.

By subtracting the general Polanyi equations from each other, the

solution sought by Franklin and Gosling is readily established:

tan � ¼
2 cos �r

sin �r

ðcos �0 � cos �Þ ¼
ð4� �2s2

r Þ
1=2

2�sr

ðcos �0 � cos �Þ: ð6Þ

The equation published by Franklin & Gosling (1953) [i.e. equation

(5)] is obtained by substituting cos �0 ¼ �s03r=s3 and cos � ¼ s3r=s3,

and replacing cos �r ¼ 1 for all �r.

Although application to model fiber diffraction patterns with spot-

shaped reflections and small tilt angles confirms an advantage of the

cosine relation over the tangent relation, the advantage is turned into

a severe disadvantage when arc-shaped reflections of real patterns

are processed. In this case the observed direction angles appear

shifted in the same direction, and only equation (6) returns a tilt angle

that can be accepted for a direct mapping without tilt-angle refine-

ment.

3. Conclusion

The exact inversion equation for the tilt angle � remedies a

substantial handicap concerning the direct mapping of two-

dimensional fiber scattering patterns onto the reciprocal space.

Admittedly, iterative refinement of the mapping parameters is the

best way to obtain high-quality intensity maps in reciprocal space, as

long as the procedure is based on proper consideration of diffraction

geometry. Thus, in static crystallographic studies the available inter-

active computer programs are the methods of choice. Nevertheless, in

time-resolved scattering experiments many patterns must be pre-

processed and evaluated. Practical application will show in which

kind of investigations the time-consuming refinement of transfor-

mation parameters that is typical for the current Fraser-correction

method can be avoided. Moreover, the abstraction of Polanyi may

help to devise fast mapping procedures based on the geometrical

properties of the reflection circle.
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Figure 2
Image positions of a specific fiber reflection on a plane detector (after Polanyi,
1921). Open symbols mark the positions for a fiber oriented perpendicular to the
primary beam (direction angle �0). Filled symbols mark typical positions for a tilted
fiber. The direction angles � and �0 determine the tilt angle � of the fiber.


